SECTION 1 Coprocessor Instructions

This chapter describes the generic ColdFire coprocessor instructions. These instructions
support optional application specific accelerators such as the CAU (see chapter XX).

Cpl Dbcbusy Branch Conditionally if CoProcessor Busy

Operation: If CoProcessor is Busy
Then PC + d16 — PC

Assembler
Syntax: cplDbcbusy <label>
Attributes: Size = Word

Description: The state of the selected CoProcessor is tested and if it is busy executing a
multi-cycle instruction, program execution continues at location (PC) + displacement.
The program counter contains the address of the instruction word for the cplDbcbusy
instruction plus two. The displacement is a two’s-complement integer that represents
the relative distance in bytes from the current program counter to the destination
program counter.

Condition Codes: Not affected

Instruction Format:

5. 14 13 12 11 {10 9 8 7 6 5 4 3 2 1 0
oo e e Jwo]of]]t [ofofol] -]~ -]-

16-BIT SIGNED DISPLACEMENT

Instruction Fields:
ID—CoProcessor identifier {0,1}.

16-Bit Displacement field—two’s complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed if the
condition is met.

The low-order 3 bits of the operation word can contain any value [0-7].
NOTE

If execution of this instruction is attempted and the selected CoProcessor not present
(or logically disabled), the processor core responds with a non-supported
instruction exception.

C pl Did CoProcessorLoad

Operation: Source Operands, Command — CoProcessor
<ea>y — CoProcessor Operand 1
Rx — CoProcessor Operand 2
CMD — CoProcessor Command

Assembler

Syntax: cplDld <ea>y,Rx,ET,CMD

Attributes: Size = Byte, Word, Longword

Description: Move the contents of the two source operands along with the

coprocessor specific command to the destination CoProcessor.
Condition Codes: Not affected

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1] 1 [1 | 1] D 0 SIZE MODE REGISTER
Rx ET CMD

Instruction Fields:
ID—CoProcessor identifier {0,1}.

SIZE—Size specifier for the source operand defined by <ea>y:
00 - byte operation
01 - word operation
10 - longword operation

Effective Address—Specifies the source operand <ea>y; use only the data
addressing modes listed in the following table:

Addressing Mode| Mode Register Addressing Mode| Mode Register

Dy 000 reg. number:Dy (xxx).W — —
Ay 001 reg. number:Ay (xxx).L — —
(Ay) 010 reg. number:Ay #<data> — —

(Ay) + 011 reg. number:Ay

—(Ay) 100 reg. number:Ay
(d46,Ay) 101 reg. number:Ay (d46,PC) — —
(dg,Ay, Xi) — — (dg,PC,Xi) — —

Rx—Register specifier for a second source operand defined by Rx, where $0 is
DO,..., $7 is D7, $8 is AO0,..., $F is A7. This operand is always longword in size.

ET—Execution time specifier which defines the number of machine cycles required
by the CoProcessor before the next instruction can be dispatched to the
CoProcessor:

if ET = $0 - $6, then “ET+1” cycles are required by the CoProcessor

if ET = $7, then the execution time is 8 cycles or more, and the ColdFire core uses
a coprocessor interface signal to determine the next available issue time

CMD—CoProcessor-defined command. This field must be non-zero since the
ColdFire core interprets CMD=0 as the CoProcessor NOP instruction.

NOTE

If execution of this instruction is attempted and the selected CoProcessor not present
(or logically disabled), the processor core responds with a non-supported
instruction exception.

Cpl Dnop CoProcessor No Operation

Operation: Stall the Core Until the Next-Available Instruction Dispatch Time
Assembler

Syntax: cplDnop ET

Attributes: Unsized

Description: No operation occurs. The processor state, other than the program

counter, is unaffected. The processor core stalls until the next-
available CoProcessor dispatch time, and then continues with the
instruction following the cplDnop. This operation is not sent to the
CoProcessor, and may be useful for instruction scheduling.

Condition Codes: Not affected

Instruction Format:

5 14 18 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 [1] 1 [1+] D o | size MODE REGISTER
Rx ET 0 0 0 0 0 0 0 0 0

Instruction Fields:
ID—CoProcessor identifier {0,1}.
SIZE—This field is not used, and may be programmed to {00, 01, 10}.

Effective Address—This field is not used, and may be programmed to any supported
value shown in the following table:

Addressing Mode| Mode Register Addressing Mode| Mode Register

Dy 000 reg. number:Dy (xxx).W — —
Ay 001 reg. number:Ay (xxx).L — —
(Ay) 010 reg. number:Ay #<data> — —

(Ay) + 011 reg. number:Ay

— (Ay) 100 reg. number:Ay
(d16,Ay) 101 reg. number:Ay (d16,PC) — —
(dg,Ay,Xi) — — (dg,PC,Xi) — —

Rx—This field is not used, and may be programmed to any value.

ET—Execution time specifier which defines the number of machine cycles required
by the CoProcessor before the next instruction can be dispatched to the
CoProcessor:

if ET = $0 - $7, then “ET+1” cycles are required by the CoProcessor

NOTE

If execution of this instruction is attempted and the selected CoProcessor not present
(or logically disabled), the processor core responds with a non-supported
instruction exception.

cpiDst CoProcessor Store

Operation: Source Ry Operand, Command — CoProcessor
CoProcessor Result — Destination

Ry — CoProcessor Operand 2
CMD — CoProcessor Command
Result — Destination

Assembler

Syntax: cplDst Ry,<ea>x,ET,CMD

Attributes: Size = Byte, Word, Longword

Description: Move the contents of the register source operand along with the

coprocessor specific command to the destination CoProcessor, and
store the result from the CoProcessor in the destination effective
address.

Condition Codes: Not affected

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1] 1 [1 | 1] D 1 SIZE MODE REGISTER
Ry ET CMD

Instruction Fields:
ID—CoProcessor identifier {0,1}.

SIZE—Size specifier for the destination operand defined by <ea>x:
00 - byte operation
01 - word operation
10 - longword operation

If the destination <ea>x specifies a register operand (Dx, Ax), the SIZE specifier must
be longword (10). Stores to memory destinations can be any size.

Effective Address field—Specifies the destination operand <ea>x; use only the data
addressing modes listed in the following table:

Addressing Mode| Mode Register Addressing Mode| Mode Register

Dx* 000 reg. number:Dx (xxx).W — —
Ax* 001 reg. number:Ax (xxx).L — —
(Ax) 010 reg. number:Ax #<data> — —

(AX) + 011 reg. number:Ax

— (Ax) 100 reg. number:Ax
(d4g,AX) 101 reg. number:Ax (d46,PC) — —
(dg,Ax,Xi) — — (dg,PC,Xi) — —

* Size must be longword (10)

Ry—Reqgister specifier for a second source operand defined by Ry, where $0 is DO,
..., $7 is D7, $8 is AQ,..., $F is A7. This operand is always longword in size.

ET—EXxecution time specifier which defines the number of machine cycles required
by the CoProcessor before the result is driven back to the ColdFire core:

if ET = $0 - $6, then “ET” cycles (after the command is received) are required by
the CoProcessor

if ET = $7, then the execution time is 8 cycles or more, and the ColdFire core uses
the CoProclDBusyB signal to determine when the result is valid

CMD—CoProcessor-defined command. This field must be non-zero since the
ColdFire core interprets CMD=0 as the CoProcessor NOP instruction.

NOTE

If execution of this instruction is attempted and the selected CoProcessor not present
(or logically disabled), the processor core responds with a non-supported
instruction exception.

	SECTION 1 Coprocessor Instructions

