]> cygwin.com Git - cygwin-apps/setup.git/blame - lzma-sdk/LzmaDec.c
* nio-ftp.c (read): Read RETR status code on EOF to avoid
[cygwin-apps/setup.git] / lzma-sdk / LzmaDec.c
CommitLineData
5bb88929
CW
1/* LzmaDec.c -- LZMA Decoder
22008-04-29
3Copyright (c) 1999-2008 Igor Pavlov
4Read LzmaDec.h for license options */
5
6#include "LzmaDec.h"
7
8#include <string.h>
9
10#define kNumTopBits 24
11#define kTopValue ((UInt32)1 << kNumTopBits)
12
13#define kNumBitModelTotalBits 11
14#define kBitModelTotal (1 << kNumBitModelTotalBits)
15#define kNumMoveBits 5
16
17#define RC_INIT_SIZE 5
18
19#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
20
21#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
22#define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
23#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
24#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
25 { UPDATE_0(p); i = (i + i); A0; } else \
26 { UPDATE_1(p); i = (i + i) + 1; A1; }
27#define GET_BIT(p, i) GET_BIT2(p, i, ; , ;)
28
29#define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); }
30#define TREE_DECODE(probs, limit, i) \
31 { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
32
33/* #define _LZMA_SIZE_OPT */
34
35#ifdef _LZMA_SIZE_OPT
36#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
37#else
38#define TREE_6_DECODE(probs, i) \
39 { i = 1; \
40 TREE_GET_BIT(probs, i); \
41 TREE_GET_BIT(probs, i); \
42 TREE_GET_BIT(probs, i); \
43 TREE_GET_BIT(probs, i); \
44 TREE_GET_BIT(probs, i); \
45 TREE_GET_BIT(probs, i); \
46 i -= 0x40; }
47#endif
48
49#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
50
51#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
52#define UPDATE_0_CHECK range = bound;
53#define UPDATE_1_CHECK range -= bound; code -= bound;
54#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
55 { UPDATE_0_CHECK; i = (i + i); A0; } else \
56 { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
57#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
58#define TREE_DECODE_CHECK(probs, limit, i) \
59 { i = 1; do { GET_BIT_CHECK(probs + i, i) } while(i < limit); i -= limit; }
60
61
62#define kNumPosBitsMax 4
63#define kNumPosStatesMax (1 << kNumPosBitsMax)
64
65#define kLenNumLowBits 3
66#define kLenNumLowSymbols (1 << kLenNumLowBits)
67#define kLenNumMidBits 3
68#define kLenNumMidSymbols (1 << kLenNumMidBits)
69#define kLenNumHighBits 8
70#define kLenNumHighSymbols (1 << kLenNumHighBits)
71
72#define LenChoice 0
73#define LenChoice2 (LenChoice + 1)
74#define LenLow (LenChoice2 + 1)
75#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
76#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
77#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
78
79
80#define kNumStates 12
81#define kNumLitStates 7
82
83#define kStartPosModelIndex 4
84#define kEndPosModelIndex 14
85#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
86
87#define kNumPosSlotBits 6
88#define kNumLenToPosStates 4
89
90#define kNumAlignBits 4
91#define kAlignTableSize (1 << kNumAlignBits)
92
93#define kMatchMinLen 2
94#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
95
96#define IsMatch 0
97#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
98#define IsRepG0 (IsRep + kNumStates)
99#define IsRepG1 (IsRepG0 + kNumStates)
100#define IsRepG2 (IsRepG1 + kNumStates)
101#define IsRep0Long (IsRepG2 + kNumStates)
102#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
103#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
104#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
105#define LenCoder (Align + kAlignTableSize)
106#define RepLenCoder (LenCoder + kNumLenProbs)
107#define Literal (RepLenCoder + kNumLenProbs)
108
109#define LZMA_BASE_SIZE 1846
110#define LZMA_LIT_SIZE 768
111
112#define LzmaProps_GetNumProbs(p) ((UInt32)LZMA_BASE_SIZE + (LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
113
114#if Literal != LZMA_BASE_SIZE
115StopCompilingDueBUG
116#endif
117
118/*
119#define LZMA_STREAM_WAS_FINISHED_ID (-1)
120#define LZMA_SPEC_LEN_OFFSET (-3)
121*/
122
123Byte kLiteralNextStates[kNumStates * 2] =
124{
125 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5,
126 7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10
127};
128
129#define LZMA_DIC_MIN (1 << 12)
130
131/* First LZMA-symbol is always decoded.
132And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization
133Out:
134 Result:
135 0 - OK
136 1 - Error
137 p->remainLen:
138 < kMatchSpecLenStart : normal remain
139 = kMatchSpecLenStart : finished
140 = kMatchSpecLenStart + 1 : Flush marker
141 = kMatchSpecLenStart + 2 : State Init Marker
142*/
143
144static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
145{
146 CLzmaProb *probs = p->probs;
147
148 unsigned state = p->state;
149 UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
150 unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
151 unsigned lpMask = ((unsigned)1 << (p->prop.lp)) - 1;
152 unsigned lc = p->prop.lc;
153
154 Byte *dic = p->dic;
155 SizeT dicBufSize = p->dicBufSize;
156 SizeT dicPos = p->dicPos;
157
158 UInt32 processedPos = p->processedPos;
159 UInt32 checkDicSize = p->checkDicSize;
160 unsigned len = 0;
161
162 const Byte *buf = p->buf;
163 UInt32 range = p->range;
164 UInt32 code = p->code;
165
166 do
167 {
168 CLzmaProb *prob;
169 UInt32 bound;
170 unsigned ttt;
171 unsigned posState = processedPos & pbMask;
172
173 prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
174 IF_BIT_0(prob)
175 {
176 unsigned symbol;
177 UPDATE_0(prob);
178 prob = probs + Literal;
179 if (checkDicSize != 0 || processedPos != 0)
180 prob += (LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) +
181 (dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc))));
182
183 if (state < kNumLitStates)
184 {
185 symbol = 1;
186 do { GET_BIT(prob + symbol, symbol) } while (symbol < 0x100);
187 }
188 else
189 {
190 unsigned matchByte = p->dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
191 unsigned offs = 0x100;
192 symbol = 1;
193 do
194 {
195 unsigned bit;
196 CLzmaProb *probLit;
197 matchByte <<= 1;
198 bit = (matchByte & offs);
199 probLit = prob + offs + bit + symbol;
200 GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit)
201 }
202 while (symbol < 0x100);
203 }
204 dic[dicPos++] = (Byte)symbol;
205 processedPos++;
206
207 state = kLiteralNextStates[state];
208 /* if (state < 4) state = 0; else if (state < 10) state -= 3; else state -= 6; */
209 continue;
210 }
211 else
212 {
213 UPDATE_1(prob);
214 prob = probs + IsRep + state;
215 IF_BIT_0(prob)
216 {
217 UPDATE_0(prob);
218 state += kNumStates;
219 prob = probs + LenCoder;
220 }
221 else
222 {
223 UPDATE_1(prob);
224 if (checkDicSize == 0 && processedPos == 0)
225 return SZ_ERROR_DATA;
226 prob = probs + IsRepG0 + state;
227 IF_BIT_0(prob)
228 {
229 UPDATE_0(prob);
230 prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
231 IF_BIT_0(prob)
232 {
233 UPDATE_0(prob);
234 dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
235 dicPos++;
236 processedPos++;
237 state = state < kNumLitStates ? 9 : 11;
238 continue;
239 }
240 UPDATE_1(prob);
241 }
242 else
243 {
244 UInt32 distance;
245 UPDATE_1(prob);
246 prob = probs + IsRepG1 + state;
247 IF_BIT_0(prob)
248 {
249 UPDATE_0(prob);
250 distance = rep1;
251 }
252 else
253 {
254 UPDATE_1(prob);
255 prob = probs + IsRepG2 + state;
256 IF_BIT_0(prob)
257 {
258 UPDATE_0(prob);
259 distance = rep2;
260 }
261 else
262 {
263 UPDATE_1(prob);
264 distance = rep3;
265 rep3 = rep2;
266 }
267 rep2 = rep1;
268 }
269 rep1 = rep0;
270 rep0 = distance;
271 }
272 state = state < kNumLitStates ? 8 : 11;
273 prob = probs + RepLenCoder;
274 }
275 {
276 unsigned limit, offset;
277 CLzmaProb *probLen = prob + LenChoice;
278 IF_BIT_0(probLen)
279 {
280 UPDATE_0(probLen);
281 probLen = prob + LenLow + (posState << kLenNumLowBits);
282 offset = 0;
283 limit = (1 << kLenNumLowBits);
284 }
285 else
286 {
287 UPDATE_1(probLen);
288 probLen = prob + LenChoice2;
289 IF_BIT_0(probLen)
290 {
291 UPDATE_0(probLen);
292 probLen = prob + LenMid + (posState << kLenNumMidBits);
293 offset = kLenNumLowSymbols;
294 limit = (1 << kLenNumMidBits);
295 }
296 else
297 {
298 UPDATE_1(probLen);
299 probLen = prob + LenHigh;
300 offset = kLenNumLowSymbols + kLenNumMidSymbols;
301 limit = (1 << kLenNumHighBits);
302 }
303 }
304 TREE_DECODE(probLen, limit, len);
305 len += offset;
306 }
307
308 if (state >= kNumStates)
309 {
310 UInt32 distance;
311 prob = probs + PosSlot +
312 ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
313 TREE_6_DECODE(prob, distance);
314 if (distance >= kStartPosModelIndex)
315 {
316 unsigned posSlot = (unsigned)distance;
317 int numDirectBits = (int)(((distance >> 1) - 1));
318 distance = (2 | (distance & 1));
319 if (posSlot < kEndPosModelIndex)
320 {
321 distance <<= numDirectBits;
322 prob = probs + SpecPos + distance - posSlot - 1;
323 {
324 UInt32 mask = 1;
325 unsigned i = 1;
326 do
327 {
328 GET_BIT2(prob + i, i, ; , distance |= mask);
329 mask <<= 1;
330 }
331 while(--numDirectBits != 0);
332 }
333 }
334 else
335 {
336 numDirectBits -= kNumAlignBits;
337 do
338 {
339 NORMALIZE
340 range >>= 1;
341
342 {
343 UInt32 t;
344 code -= range;
345 t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
346 distance = (distance << 1) + (t + 1);
347 code += range & t;
348 }
349 /*
350 distance <<= 1;
351 if (code >= range)
352 {
353 code -= range;
354 distance |= 1;
355 }
356 */
357 }
358 while (--numDirectBits != 0);
359 prob = probs + Align;
360 distance <<= kNumAlignBits;
361 {
362 unsigned i = 1;
363 GET_BIT2(prob + i, i, ; , distance |= 1);
364 GET_BIT2(prob + i, i, ; , distance |= 2);
365 GET_BIT2(prob + i, i, ; , distance |= 4);
366 GET_BIT2(prob + i, i, ; , distance |= 8);
367 }
368 if (distance == (UInt32)0xFFFFFFFF)
369 {
370 len += kMatchSpecLenStart;
371 state -= kNumStates;
372 break;
373 }
374 }
375 }
376 rep3 = rep2;
377 rep2 = rep1;
378 rep1 = rep0;
379 rep0 = distance + 1;
380 if (checkDicSize == 0)
381 {
382 if (distance >= processedPos)
383 return SZ_ERROR_DATA;
384 }
385 else if (distance >= checkDicSize)
386 return SZ_ERROR_DATA;
387 state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
388 /* state = kLiteralNextStates[state]; */
389 }
390
391 len += kMatchMinLen;
392
393 {
394 SizeT rem = limit - dicPos;
395 unsigned curLen = ((rem < len) ? (unsigned)rem : len);
396 SizeT pos = (dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0);
397
398 processedPos += curLen;
399
400 len -= curLen;
401 if (pos + curLen <= dicBufSize)
402 {
403 Byte *dest = dic + dicPos;
404 ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
405 const Byte *lim = dest + curLen;
406 dicPos += curLen;
407 do
408 *(dest) = (Byte)*(dest + src);
409 while (++dest != lim);
410 }
411 else
412 {
413 do
414 {
415 dic[dicPos++] = dic[pos];
416 if (++pos == dicBufSize)
417 pos = 0;
418 }
419 while (--curLen != 0);
420 }
421 }
422 }
423 }
424 while (dicPos < limit && buf < bufLimit);
425 NORMALIZE;
426 p->buf = buf;
427 p->range = range;
428 p->code = code;
429 p->remainLen = len;
430 p->dicPos = dicPos;
431 p->processedPos = processedPos;
432 p->reps[0] = rep0;
433 p->reps[1] = rep1;
434 p->reps[2] = rep2;
435 p->reps[3] = rep3;
436 p->state = state;
437
438 return SZ_OK;
439}
440
441static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
442{
443 if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart)
444 {
445 Byte *dic = p->dic;
446 SizeT dicPos = p->dicPos;
447 SizeT dicBufSize = p->dicBufSize;
448 unsigned len = p->remainLen;
449 UInt32 rep0 = p->reps[0];
450 if (limit - dicPos < len)
451 len = (unsigned)(limit - dicPos);
452
453 if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
454 p->checkDicSize = p->prop.dicSize;
455
456 p->processedPos += len;
457 p->remainLen -= len;
458 while (len-- != 0)
459 {
460 dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
461 dicPos++;
462 }
463 p->dicPos = dicPos;
464 }
465}
466
467/* LzmaDec_DecodeReal2 decodes LZMA-symbols and sets p->needFlush and p->needInit, if required. */
468
469static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
470{
471 do
472 {
473 SizeT limit2 = limit;
474 if (p->checkDicSize == 0)
475 {
476 UInt32 rem = p->prop.dicSize - p->processedPos;
477 if (limit - p->dicPos > rem)
478 limit2 = p->dicPos + rem;
479 }
480 RINOK(LzmaDec_DecodeReal(p, limit2, bufLimit));
481 if (p->processedPos >= p->prop.dicSize)
482 p->checkDicSize = p->prop.dicSize;
483 LzmaDec_WriteRem(p, limit);
484 }
485 while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
486
487 if (p->remainLen > kMatchSpecLenStart)
488 {
489 p->remainLen = kMatchSpecLenStart;
490 }
491 return 0;
492}
493
494typedef enum
495{
496 DUMMY_ERROR, /* unexpected end of input stream */
497 DUMMY_LIT,
498 DUMMY_MATCH,
499 DUMMY_REP
500} ELzmaDummy;
501
502static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize)
503{
504 UInt32 range = p->range;
505 UInt32 code = p->code;
506 const Byte *bufLimit = buf + inSize;
507 CLzmaProb *probs = p->probs;
508 unsigned state = p->state;
509 ELzmaDummy res;
510
511 {
512 CLzmaProb *prob;
513 UInt32 bound;
514 unsigned ttt;
515 unsigned posState = (p->processedPos) & ((1 << p->prop.pb) - 1);
516
517 prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
518 IF_BIT_0_CHECK(prob)
519 {
520 UPDATE_0_CHECK
521
522 /* if (bufLimit - buf >= 7) return DUMMY_LIT; */
523
524 prob = probs + Literal;
525 if (p->checkDicSize != 0 || p->processedPos != 0)
526 prob += (LZMA_LIT_SIZE *
527 ((((p->processedPos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) +
528 (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
529
530 if (state < kNumLitStates)
531 {
532 unsigned symbol = 1;
533 do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
534 }
535 else
536 {
537 unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
538 ((p->dicPos < p->reps[0]) ? p->dicBufSize : 0)];
539 unsigned offs = 0x100;
540 unsigned symbol = 1;
541 do
542 {
543 unsigned bit;
544 CLzmaProb *probLit;
545 matchByte <<= 1;
546 bit = (matchByte & offs);
547 probLit = prob + offs + bit + symbol;
548 GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit)
549 }
550 while (symbol < 0x100);
551 }
552 res = DUMMY_LIT;
553 }
554 else
555 {
556 unsigned len;
557 UPDATE_1_CHECK;
558
559 prob = probs + IsRep + state;
560 IF_BIT_0_CHECK(prob)
561 {
562 UPDATE_0_CHECK;
563 state = 0;
564 prob = probs + LenCoder;
565 res = DUMMY_MATCH;
566 }
567 else
568 {
569 UPDATE_1_CHECK;
570 res = DUMMY_REP;
571 prob = probs + IsRepG0 + state;
572 IF_BIT_0_CHECK(prob)
573 {
574 UPDATE_0_CHECK;
575 prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
576 IF_BIT_0_CHECK(prob)
577 {
578 UPDATE_0_CHECK;
579 NORMALIZE_CHECK;
580 return DUMMY_REP;
581 }
582 else
583 {
584 UPDATE_1_CHECK;
585 }
586 }
587 else
588 {
589 UPDATE_1_CHECK;
590 prob = probs + IsRepG1 + state;
591 IF_BIT_0_CHECK(prob)
592 {
593 UPDATE_0_CHECK;
594 }
595 else
596 {
597 UPDATE_1_CHECK;
598 prob = probs + IsRepG2 + state;
599 IF_BIT_0_CHECK(prob)
600 {
601 UPDATE_0_CHECK;
602 }
603 else
604 {
605 UPDATE_1_CHECK;
606 }
607 }
608 }
609 state = kNumStates;
610 prob = probs + RepLenCoder;
611 }
612 {
613 unsigned limit, offset;
614 CLzmaProb *probLen = prob + LenChoice;
615 IF_BIT_0_CHECK(probLen)
616 {
617 UPDATE_0_CHECK;
618 probLen = prob + LenLow + (posState << kLenNumLowBits);
619 offset = 0;
620 limit = 1 << kLenNumLowBits;
621 }
622 else
623 {
624 UPDATE_1_CHECK;
625 probLen = prob + LenChoice2;
626 IF_BIT_0_CHECK(probLen)
627 {
628 UPDATE_0_CHECK;
629 probLen = prob + LenMid + (posState << kLenNumMidBits);
630 offset = kLenNumLowSymbols;
631 limit = 1 << kLenNumMidBits;
632 }
633 else
634 {
635 UPDATE_1_CHECK;
636 probLen = prob + LenHigh;
637 offset = kLenNumLowSymbols + kLenNumMidSymbols;
638 limit = 1 << kLenNumHighBits;
639 }
640 }
641 TREE_DECODE_CHECK(probLen, limit, len);
642 len += offset;
643 }
644
645 if (state < 4)
646 {
647 unsigned posSlot;
648 prob = probs + PosSlot +
649 ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
650 kNumPosSlotBits);
651 TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
652 if (posSlot >= kStartPosModelIndex)
653 {
654 int numDirectBits = ((posSlot >> 1) - 1);
655
656 /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */
657
658 if (posSlot < kEndPosModelIndex)
659 {
660 prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1;
661 }
662 else
663 {
664 numDirectBits -= kNumAlignBits;
665 do
666 {
667 NORMALIZE_CHECK
668 range >>= 1;
669 code -= range & (((code - range) >> 31) - 1);
670 /* if (code >= range) code -= range; */
671 }
672 while (--numDirectBits != 0);
673 prob = probs + Align;
674 numDirectBits = kNumAlignBits;
675 }
676 {
677 unsigned i = 1;
678 do
679 {
680 GET_BIT_CHECK(prob + i, i);
681 }
682 while(--numDirectBits != 0);
683 }
684 }
685 }
686 }
687 }
688 NORMALIZE_CHECK;
689 return res;
690}
691
692
693static void LzmaDec_InitRc(CLzmaDec *p, const Byte *data)
694{
695 p->code = ((UInt32)data[1] << 24) | ((UInt32)data[2] << 16) | ((UInt32)data[3] << 8) | ((UInt32)data[4]);
696 p->range = 0xFFFFFFFF;
697 p->needFlush = 0;
698}
699
700static void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState)
701{
702 p->needFlush = 1;
703 p->remainLen = 0;
704 p->tempBufSize = 0;
705
706 if (initDic)
707 {
708 p->processedPos = 0;
709 p->checkDicSize = 0;
710 p->needInitState = 1;
711 }
712 if (initState)
713 p->needInitState = 1;
714}
715
716void LzmaDec_Init(CLzmaDec *p)
717{
718 p->dicPos = 0;
719 LzmaDec_InitDicAndState(p, True, True);
720}
721
722static void LzmaDec_InitStateReal(CLzmaDec *p)
723{
724 UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (p->prop.lc + p->prop.lp));
725 UInt32 i;
726 CLzmaProb *probs = p->probs;
727 for (i = 0; i < numProbs; i++)
728 probs[i] = kBitModelTotal >> 1;
729 p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
730 p->state = 0;
731 p->needInitState = 0;
732}
733
734SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
735 ELzmaFinishMode finishMode, ELzmaStatus *status)
736{
737 SizeT inSize = *srcLen;
738 (*srcLen) = 0;
739 LzmaDec_WriteRem(p, dicLimit);
740
741 *status = LZMA_STATUS_NOT_SPECIFIED;
742
743 while (p->remainLen != kMatchSpecLenStart)
744 {
745 int checkEndMarkNow;
746
747 if (p->needFlush != 0)
748 {
749 for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
750 p->tempBuf[p->tempBufSize++] = *src++;
751 if (p->tempBufSize < RC_INIT_SIZE)
752 {
753 *status = LZMA_STATUS_NEEDS_MORE_INPUT;
754 return SZ_OK;
755 }
756 if (p->tempBuf[0] != 0)
757 return SZ_ERROR_DATA;
758
759 LzmaDec_InitRc(p, p->tempBuf);
760 p->tempBufSize = 0;
761 }
762
763 checkEndMarkNow = 0;
764 if (p->dicPos >= dicLimit)
765 {
766 if (p->remainLen == 0 && p->code == 0)
767 {
768 *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
769 return SZ_OK;
770 }
771 if (finishMode == LZMA_FINISH_ANY)
772 {
773 *status = LZMA_STATUS_NOT_FINISHED;
774 return SZ_OK;
775 }
776 if (p->remainLen != 0)
777 {
778 *status = LZMA_STATUS_NOT_FINISHED;
779 return SZ_ERROR_DATA;
780 }
781 checkEndMarkNow = 1;
782 }
783
784 if (p->needInitState)
785 LzmaDec_InitStateReal(p);
786
787 if (p->tempBufSize == 0)
788 {
789 SizeT processed;
790 const Byte *bufLimit;
791 if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
792 {
793 int dummyRes = LzmaDec_TryDummy(p, src, inSize);
794 if (dummyRes == DUMMY_ERROR)
795 {
796 memcpy(p->tempBuf, src, inSize);
797 p->tempBufSize = (unsigned)inSize;
798 (*srcLen) += inSize;
799 *status = LZMA_STATUS_NEEDS_MORE_INPUT;
800 return SZ_OK;
801 }
802 if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
803 {
804 *status = LZMA_STATUS_NOT_FINISHED;
805 return SZ_ERROR_DATA;
806 }
807 bufLimit = src;
808 }
809 else
810 bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
811 p->buf = src;
812 if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0)
813 return SZ_ERROR_DATA;
814 processed = p->buf - src;
815 (*srcLen) += processed;
816 src += processed;
817 inSize -= processed;
818 }
819 else
820 {
821 unsigned rem = p->tempBufSize, lookAhead = 0;
822 while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize)
823 p->tempBuf[rem++] = src[lookAhead++];
824 p->tempBufSize = rem;
825 if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
826 {
827 int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem);
828 if (dummyRes == DUMMY_ERROR)
829 {
830 (*srcLen) += lookAhead;
831 *status = LZMA_STATUS_NEEDS_MORE_INPUT;
832 return SZ_OK;
833 }
834 if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
835 {
836 *status = LZMA_STATUS_NOT_FINISHED;
837 return SZ_ERROR_DATA;
838 }
839 }
840 p->buf = p->tempBuf;
841 if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0)
842 return SZ_ERROR_DATA;
843 lookAhead -= (rem - (unsigned)(p->buf - p->tempBuf));
844 (*srcLen) += lookAhead;
845 src += lookAhead;
846 inSize -= lookAhead;
847 p->tempBufSize = 0;
848 }
849 }
850 if (p->code == 0)
851 *status = LZMA_STATUS_FINISHED_WITH_MARK;
852 return (p->code == 0) ? SZ_OK : SZ_ERROR_DATA;
853}
854
855SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
856{
857 SizeT outSize = *destLen;
858 SizeT inSize = *srcLen;
859 *srcLen = *destLen = 0;
860 for (;;)
861 {
862 SizeT inSizeCur = inSize, outSizeCur, dicPos;
863 ELzmaFinishMode curFinishMode;
864 SRes res;
865 if (p->dicPos == p->dicBufSize)
866 p->dicPos = 0;
867 dicPos = p->dicPos;
868 if (outSize > p->dicBufSize - dicPos)
869 {
870 outSizeCur = p->dicBufSize;
871 curFinishMode = LZMA_FINISH_ANY;
872 }
873 else
874 {
875 outSizeCur = dicPos + outSize;
876 curFinishMode = finishMode;
877 }
878
879 res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
880 src += inSizeCur;
881 inSize -= inSizeCur;
882 *srcLen += inSizeCur;
883 outSizeCur = p->dicPos - dicPos;
884 memcpy(dest, p->dic + dicPos, outSizeCur);
885 dest += outSizeCur;
886 outSize -= outSizeCur;
887 *destLen += outSizeCur;
888 if (res != 0)
889 return res;
890 if (outSizeCur == 0 || outSize == 0)
891 return SZ_OK;
892 }
893}
894
895void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc)
896{
897 alloc->Free(alloc, p->probs);
898 p->probs = 0;
899}
900
901static void LzmaDec_FreeDict(CLzmaDec *p, ISzAlloc *alloc)
902{
903 alloc->Free(alloc, p->dic);
904 p->dic = 0;
905}
906
907void LzmaDec_Free(CLzmaDec *p, ISzAlloc *alloc)
908{
909 LzmaDec_FreeProbs(p, alloc);
910 LzmaDec_FreeDict(p, alloc);
911}
912
913SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
914{
915 UInt32 dicSize;
916 Byte d;
917
918 if (size < LZMA_PROPS_SIZE)
919 return SZ_ERROR_UNSUPPORTED;
920 else
921 dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
922
923 if (dicSize < LZMA_DIC_MIN)
924 dicSize = LZMA_DIC_MIN;
925 p->dicSize = dicSize;
926
927 d = data[0];
928 if (d >= (9 * 5 * 5))
929 return SZ_ERROR_UNSUPPORTED;
930
931 p->lc = d % 9;
932 d /= 9;
933 p->pb = d / 5;
934 p->lp = d % 5;
935
936 return SZ_OK;
937}
938
939static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAlloc *alloc)
940{
941 UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
942 if (p->probs == 0 || numProbs != p->numProbs)
943 {
944 LzmaDec_FreeProbs(p, alloc);
945 p->probs = (CLzmaProb *)alloc->Alloc(alloc, numProbs * sizeof(CLzmaProb));
946 p->numProbs = numProbs;
947 if (p->probs == 0)
948 return SZ_ERROR_MEM;
949 }
950 return SZ_OK;
951}
952
953SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
954{
955 CLzmaProps propNew;
956 RINOK(LzmaProps_Decode(&propNew, props, propsSize));
957 RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
958 p->prop = propNew;
959 return SZ_OK;
960}
961
962SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
963{
964 CLzmaProps propNew;
965 SizeT dicBufSize;
966 RINOK(LzmaProps_Decode(&propNew, props, propsSize));
967 RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
968 dicBufSize = propNew.dicSize;
969 if (p->dic == 0 || dicBufSize != p->dicBufSize)
970 {
971 LzmaDec_FreeDict(p, alloc);
972 p->dic = (Byte *)alloc->Alloc(alloc, dicBufSize);
973 if (p->dic == 0)
974 {
975 LzmaDec_FreeProbs(p, alloc);
976 return SZ_ERROR_MEM;
977 }
978 }
979 p->dicBufSize = dicBufSize;
980 p->prop = propNew;
981 return SZ_OK;
982}
983
984SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
985 const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
986 ELzmaStatus *status, ISzAlloc *alloc)
987{
988 CLzmaDec p;
989 SRes res;
990 SizeT inSize = *srcLen;
991 SizeT outSize = *destLen;
992 *srcLen = *destLen = 0;
993 if (inSize < RC_INIT_SIZE)
994 return SZ_ERROR_INPUT_EOF;
995
996 LzmaDec_Construct(&p);
997 res = LzmaDec_AllocateProbs(&p, propData, propSize, alloc);
998 if (res != 0)
999 return res;
1000 p.dic = dest;
1001 p.dicBufSize = outSize;
1002
1003 LzmaDec_Init(&p);
1004
1005 *srcLen = inSize;
1006 res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
1007
1008 if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
1009 res = SZ_ERROR_INPUT_EOF;
1010
1011 (*destLen) = p.dicPos;
1012 LzmaDec_FreeProbs(&p, alloc);
1013 return res;
1014}
This page took 0.115179 seconds and 5 git commands to generate.