]> cygwin.com Git - cygwin-apps/setup.git/blob - bz2lib/blocksort.c
ec426725b1e2cab47d2f43b928f70b3bd9340fdc
[cygwin-apps/setup.git] / bz2lib / blocksort.c
1
2 /*-------------------------------------------------------------*/
3 /*--- Block sorting machinery ---*/
4 /*--- blocksort.c ---*/
5 /*-------------------------------------------------------------*/
6
7 /*--
8 This file is a part of bzip2 and/or libbzip2, a program and
9 library for lossless, block-sorting data compression.
10
11 Copyright (C) 1996-2000 Julian R Seward. All rights reserved.
12
13 Redistribution and use in source and binary forms, with or without
14 modification, are permitted provided that the following conditions
15 are met:
16
17 1. Redistributions of source code must retain the above copyright
18 notice, this list of conditions and the following disclaimer.
19
20 2. The origin of this software must not be misrepresented; you must
21 not claim that you wrote the original software. If you use this
22 software in a product, an acknowledgment in the product
23 documentation would be appreciated but is not required.
24
25 3. Altered source versions must be plainly marked as such, and must
26 not be misrepresented as being the original software.
27
28 4. The name of the author may not be used to endorse or promote
29 products derived from this software without specific prior written
30 permission.
31
32 THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
33 OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
34 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
36 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
38 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
39 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
40 WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
41 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
42 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
43
44 Julian Seward, Cambridge, UK.
45 jseward@acm.org
46 bzip2/libbzip2 version 1.0 of 21 March 2000
47
48 This program is based on (at least) the work of:
49 Mike Burrows
50 David Wheeler
51 Peter Fenwick
52 Alistair Moffat
53 Radford Neal
54 Ian H. Witten
55 Robert Sedgewick
56 Jon L. Bentley
57
58 For more information on these sources, see the manual.
59
60 To get some idea how the block sorting algorithms in this file
61 work, read my paper
62 On the Performance of BWT Sorting Algorithms
63 in Proceedings of the IEEE Data Compression Conference 2000,
64 Snowbird, Utah, USA, 27-30 March 2000. The main sort in this
65 file implements the algorithm called cache in the paper.
66 --*/
67
68
69 #include "bzlib_private.h"
70
71 /*---------------------------------------------*/
72 /*--- Fallback O(N log(N)^2) sorting ---*/
73 /*--- algorithm, for repetitive blocks ---*/
74 /*---------------------------------------------*/
75
76 /*---------------------------------------------*/
77 static
78 __inline__
79 void fallbackSimpleSort ( UInt32* fmap,
80 UInt32* eclass,
81 Int32 lo,
82 Int32 hi )
83 {
84 Int32 i, j, tmp;
85 UInt32 ec_tmp;
86
87 if (lo == hi) return;
88
89 if (hi - lo > 3) {
90 for ( i = hi-4; i >= lo; i-- ) {
91 tmp = fmap[i];
92 ec_tmp = eclass[tmp];
93 for ( j = i+4; j <= hi && ec_tmp > eclass[fmap[j]]; j += 4 )
94 fmap[j-4] = fmap[j];
95 fmap[j-4] = tmp;
96 }
97 }
98
99 for ( i = hi-1; i >= lo; i-- ) {
100 tmp = fmap[i];
101 ec_tmp = eclass[tmp];
102 for ( j = i+1; j <= hi && ec_tmp > eclass[fmap[j]]; j++ )
103 fmap[j-1] = fmap[j];
104 fmap[j-1] = tmp;
105 }
106 }
107
108
109 /*---------------------------------------------*/
110 #define fswap(zz1, zz2) \
111 { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; }
112
113 #define fvswap(zzp1, zzp2, zzn) \
114 { \
115 Int32 yyp1 = (zzp1); \
116 Int32 yyp2 = (zzp2); \
117 Int32 yyn = (zzn); \
118 while (yyn > 0) { \
119 fswap(fmap[yyp1], fmap[yyp2]); \
120 yyp1++; yyp2++; yyn--; \
121 } \
122 }
123
124
125 #define fmin(a,b) ((a) < (b)) ? (a) : (b)
126
127 #define fpush(lz,hz) { stackLo[sp] = lz; \
128 stackHi[sp] = hz; \
129 sp++; }
130
131 #define fpop(lz,hz) { sp--; \
132 lz = stackLo[sp]; \
133 hz = stackHi[sp]; }
134
135 #define FALLBACK_QSORT_SMALL_THRESH 10
136 #define FALLBACK_QSORT_STACK_SIZE 100
137
138
139 static
140 void fallbackQSort3 ( UInt32* fmap,
141 UInt32* eclass,
142 Int32 loSt,
143 Int32 hiSt )
144 {
145 Int32 unLo, unHi, ltLo, gtHi, n, m;
146 Int32 sp, lo, hi;
147 UInt32 med, r, r3;
148 Int32 stackLo[FALLBACK_QSORT_STACK_SIZE];
149 Int32 stackHi[FALLBACK_QSORT_STACK_SIZE];
150
151 r = 0;
152
153 sp = 0;
154 fpush ( loSt, hiSt );
155
156 while (sp > 0) {
157
158 AssertH ( sp < FALLBACK_QSORT_STACK_SIZE, 1004 );
159
160 fpop ( lo, hi );
161 if (hi - lo < FALLBACK_QSORT_SMALL_THRESH) {
162 fallbackSimpleSort ( fmap, eclass, lo, hi );
163 continue;
164 }
165
166 /* Random partitioning. Median of 3 sometimes fails to
167 avoid bad cases. Median of 9 seems to help but
168 looks rather expensive. This too seems to work but
169 is cheaper. Guidance for the magic constants
170 7621 and 32768 is taken from Sedgewick's algorithms
171 book, chapter 35.
172 */
173 r = ((r * 7621) + 1) % 32768;
174 r3 = r % 3;
175 if (r3 == 0) med = eclass[fmap[lo]]; else
176 if (r3 == 1) med = eclass[fmap[(lo+hi)>>1]]; else
177 med = eclass[fmap[hi]];
178
179 unLo = ltLo = lo;
180 unHi = gtHi = hi;
181
182 while (1) {
183 while (1) {
184 if (unLo > unHi) break;
185 n = (Int32)eclass[fmap[unLo]] - (Int32)med;
186 if (n == 0) {
187 fswap(fmap[unLo], fmap[ltLo]);
188 ltLo++; unLo++;
189 continue;
190 };
191 if (n > 0) break;
192 unLo++;
193 }
194 while (1) {
195 if (unLo > unHi) break;
196 n = (Int32)eclass[fmap[unHi]] - (Int32)med;
197 if (n == 0) {
198 fswap(fmap[unHi], fmap[gtHi]);
199 gtHi--; unHi--;
200 continue;
201 };
202 if (n < 0) break;
203 unHi--;
204 }
205 if (unLo > unHi) break;
206 fswap(fmap[unLo], fmap[unHi]); unLo++; unHi--;
207 }
208
209 AssertD ( unHi == unLo-1, "fallbackQSort3(2)" );
210
211 if (gtHi < ltLo) continue;
212
213 n = fmin(ltLo-lo, unLo-ltLo); fvswap(lo, unLo-n, n);
214 m = fmin(hi-gtHi, gtHi-unHi); fvswap(unLo, hi-m+1, m);
215
216 n = lo + unLo - ltLo - 1;
217 m = hi - (gtHi - unHi) + 1;
218
219 if (n - lo > hi - m) {
220 fpush ( lo, n );
221 fpush ( m, hi );
222 } else {
223 fpush ( m, hi );
224 fpush ( lo, n );
225 }
226 }
227 }
228
229 #undef fmin
230 #undef fpush
231 #undef fpop
232 #undef fswap
233 #undef fvswap
234 #undef FALLBACK_QSORT_SMALL_THRESH
235 #undef FALLBACK_QSORT_STACK_SIZE
236
237
238 /*---------------------------------------------*/
239 /* Pre:
240 nblock > 0
241 eclass exists for [0 .. nblock-1]
242 ((UChar*)eclass) [0 .. nblock-1] holds block
243 ptr exists for [0 .. nblock-1]
244
245 Post:
246 ((UChar*)eclass) [0 .. nblock-1] holds block
247 All other areas of eclass destroyed
248 fmap [0 .. nblock-1] holds sorted order
249 bhtab [ 0 .. 2+(nblock/32) ] destroyed
250 */
251
252 #define SET_BH(zz) bhtab[(zz) >> 5] |= (1 << ((zz) & 31))
253 #define CLEAR_BH(zz) bhtab[(zz) >> 5] &= ~(1 << ((zz) & 31))
254 #define ISSET_BH(zz) (bhtab[(zz) >> 5] & (1 << ((zz) & 31)))
255 #define WORD_BH(zz) bhtab[(zz) >> 5]
256 #define UNALIGNED_BH(zz) ((zz) & 0x01f)
257
258 static
259 void fallbackSort ( UInt32* fmap,
260 UInt32* eclass,
261 UInt32* bhtab,
262 Int32 nblock,
263 Int32 verb )
264 {
265 Int32 ftab[257];
266 Int32 ftabCopy[256];
267 Int32 H, i, j, k, l, r, cc, cc1;
268 Int32 nNotDone;
269 Int32 nBhtab;
270 UChar* eclass8 = (UChar*)eclass;
271
272 /*--
273 Initial 1-char radix sort to generate
274 initial fmap and initial BH bits.
275 --*/
276 if (verb >= 4)
277 VPrintf0 ( " bucket sorting ...\n" );
278 for (i = 0; i < 257; i++) ftab[i] = 0;
279 for (i = 0; i < nblock; i++) ftab[eclass8[i]]++;
280 for (i = 0; i < 256; i++) ftabCopy[i] = ftab[i];
281 for (i = 1; i < 257; i++) ftab[i] += ftab[i-1];
282
283 for (i = 0; i < nblock; i++) {
284 j = eclass8[i];
285 k = ftab[j] - 1;
286 ftab[j] = k;
287 fmap[k] = i;
288 }
289
290 nBhtab = 2 + (nblock / 32);
291 for (i = 0; i < nBhtab; i++) bhtab[i] = 0;
292 for (i = 0; i < 256; i++) SET_BH(ftab[i]);
293
294 /*--
295 Inductively refine the buckets. Kind-of an
296 "exponential radix sort" (!), inspired by the
297 Manber-Myers suffix array construction algorithm.
298 --*/
299
300 /*-- set sentinel bits for block-end detection --*/
301 for (i = 0; i < 32; i++) {
302 SET_BH(nblock + 2*i);
303 CLEAR_BH(nblock + 2*i + 1);
304 }
305
306 /*-- the log(N) loop --*/
307 H = 1;
308 while (1) {
309
310 if (verb >= 4)
311 VPrintf1 ( " depth %6d has ", H );
312
313 j = 0;
314 for (i = 0; i < nblock; i++) {
315 if (ISSET_BH(i)) j = i;
316 k = fmap[i] - H; if (k < 0) k += nblock;
317 eclass[k] = j;
318 }
319
320 nNotDone = 0;
321 r = -1;
322 while (1) {
323
324 /*-- find the next non-singleton bucket --*/
325 k = r + 1;
326 while (ISSET_BH(k) && UNALIGNED_BH(k)) k++;
327 if (ISSET_BH(k)) {
328 while (WORD_BH(k) == 0xffffffff) k += 32;
329 while (ISSET_BH(k)) k++;
330 }
331 l = k - 1;
332 if (l >= nblock) break;
333 while (!ISSET_BH(k) && UNALIGNED_BH(k)) k++;
334 if (!ISSET_BH(k)) {
335 while (WORD_BH(k) == 0x00000000) k += 32;
336 while (!ISSET_BH(k)) k++;
337 }
338 r = k - 1;
339 if (r >= nblock) break;
340
341 /*-- now [l, r] bracket current bucket --*/
342 if (r > l) {
343 nNotDone += (r - l + 1);
344 fallbackQSort3 ( fmap, eclass, l, r );
345
346 /*-- scan bucket and generate header bits-- */
347 cc = -1;
348 for (i = l; i <= r; i++) {
349 cc1 = eclass[fmap[i]];
350 if (cc != cc1) { SET_BH(i); cc = cc1; };
351 }
352 }
353 }
354
355 if (verb >= 4)
356 VPrintf1 ( "%6d unresolved strings\n", nNotDone );
357
358 H *= 2;
359 if (H > nblock || nNotDone == 0) break;
360 }
361
362 /*--
363 Reconstruct the original block in
364 eclass8 [0 .. nblock-1], since the
365 previous phase destroyed it.
366 --*/
367 if (verb >= 4)
368 VPrintf0 ( " reconstructing block ...\n" );
369 j = 0;
370 for (i = 0; i < nblock; i++) {
371 while (ftabCopy[j] == 0) j++;
372 ftabCopy[j]--;
373 eclass8[fmap[i]] = (UChar)j;
374 }
375 AssertH ( j < 256, 1005 );
376 }
377
378 #undef SET_BH
379 #undef CLEAR_BH
380 #undef ISSET_BH
381 #undef WORD_BH
382 #undef UNALIGNED_BH
383
384
385 /*---------------------------------------------*/
386 /*--- The main, O(N^2 log(N)) sorting ---*/
387 /*--- algorithm. Faster for "normal" ---*/
388 /*--- non-repetitive blocks. ---*/
389 /*---------------------------------------------*/
390
391 /*---------------------------------------------*/
392 static
393 __inline__
394 Bool mainGtU ( UInt32 i1,
395 UInt32 i2,
396 UChar* block,
397 UInt16* quadrant,
398 UInt32 nblock,
399 Int32* budget )
400 {
401 Int32 k;
402 UChar c1, c2;
403 UInt16 s1, s2;
404
405 AssertD ( i1 != i2, "mainGtU" );
406 /* 1 */
407 c1 = block[i1]; c2 = block[i2];
408 if (c1 != c2) return (c1 > c2);
409 i1++; i2++;
410 /* 2 */
411 c1 = block[i1]; c2 = block[i2];
412 if (c1 != c2) return (c1 > c2);
413 i1++; i2++;
414 /* 3 */
415 c1 = block[i1]; c2 = block[i2];
416 if (c1 != c2) return (c1 > c2);
417 i1++; i2++;
418 /* 4 */
419 c1 = block[i1]; c2 = block[i2];
420 if (c1 != c2) return (c1 > c2);
421 i1++; i2++;
422 /* 5 */
423 c1 = block[i1]; c2 = block[i2];
424 if (c1 != c2) return (c1 > c2);
425 i1++; i2++;
426 /* 6 */
427 c1 = block[i1]; c2 = block[i2];
428 if (c1 != c2) return (c1 > c2);
429 i1++; i2++;
430 /* 7 */
431 c1 = block[i1]; c2 = block[i2];
432 if (c1 != c2) return (c1 > c2);
433 i1++; i2++;
434 /* 8 */
435 c1 = block[i1]; c2 = block[i2];
436 if (c1 != c2) return (c1 > c2);
437 i1++; i2++;
438 /* 9 */
439 c1 = block[i1]; c2 = block[i2];
440 if (c1 != c2) return (c1 > c2);
441 i1++; i2++;
442 /* 10 */
443 c1 = block[i1]; c2 = block[i2];
444 if (c1 != c2) return (c1 > c2);
445 i1++; i2++;
446 /* 11 */
447 c1 = block[i1]; c2 = block[i2];
448 if (c1 != c2) return (c1 > c2);
449 i1++; i2++;
450 /* 12 */
451 c1 = block[i1]; c2 = block[i2];
452 if (c1 != c2) return (c1 > c2);
453 i1++; i2++;
454
455 k = nblock + 8;
456
457 do {
458 /* 1 */
459 c1 = block[i1]; c2 = block[i2];
460 if (c1 != c2) return (c1 > c2);
461 s1 = quadrant[i1]; s2 = quadrant[i2];
462 if (s1 != s2) return (s1 > s2);
463 i1++; i2++;
464 /* 2 */
465 c1 = block[i1]; c2 = block[i2];
466 if (c1 != c2) return (c1 > c2);
467 s1 = quadrant[i1]; s2 = quadrant[i2];
468 if (s1 != s2) return (s1 > s2);
469 i1++; i2++;
470 /* 3 */
471 c1 = block[i1]; c2 = block[i2];
472 if (c1 != c2) return (c1 > c2);
473 s1 = quadrant[i1]; s2 = quadrant[i2];
474 if (s1 != s2) return (s1 > s2);
475 i1++; i2++;
476 /* 4 */
477 c1 = block[i1]; c2 = block[i2];
478 if (c1 != c2) return (c1 > c2);
479 s1 = quadrant[i1]; s2 = quadrant[i2];
480 if (s1 != s2) return (s1 > s2);
481 i1++; i2++;
482 /* 5 */
483 c1 = block[i1]; c2 = block[i2];
484 if (c1 != c2) return (c1 > c2);
485 s1 = quadrant[i1]; s2 = quadrant[i2];
486 if (s1 != s2) return (s1 > s2);
487 i1++; i2++;
488 /* 6 */
489 c1 = block[i1]; c2 = block[i2];
490 if (c1 != c2) return (c1 > c2);
491 s1 = quadrant[i1]; s2 = quadrant[i2];
492 if (s1 != s2) return (s1 > s2);
493 i1++; i2++;
494 /* 7 */
495 c1 = block[i1]; c2 = block[i2];
496 if (c1 != c2) return (c1 > c2);
497 s1 = quadrant[i1]; s2 = quadrant[i2];
498 if (s1 != s2) return (s1 > s2);
499 i1++; i2++;
500 /* 8 */
501 c1 = block[i1]; c2 = block[i2];
502 if (c1 != c2) return (c1 > c2);
503 s1 = quadrant[i1]; s2 = quadrant[i2];
504 if (s1 != s2) return (s1 > s2);
505 i1++; i2++;
506
507 if (i1 >= nblock) i1 -= nblock;
508 if (i2 >= nblock) i2 -= nblock;
509
510 k -= 8;
511 (*budget)--;
512 }
513 while (k >= 0);
514
515 return False;
516 }
517
518
519 /*---------------------------------------------*/
520 /*--
521 Knuth's increments seem to work better
522 than Incerpi-Sedgewick here. Possibly
523 because the number of elems to sort is
524 usually small, typically <= 20.
525 --*/
526 static
527 Int32 incs[14] = { 1, 4, 13, 40, 121, 364, 1093, 3280,
528 9841, 29524, 88573, 265720,
529 797161, 2391484 };
530
531 static
532 void mainSimpleSort ( UInt32* ptr,
533 UChar* block,
534 UInt16* quadrant,
535 Int32 nblock,
536 Int32 lo,
537 Int32 hi,
538 Int32 d,
539 Int32* budget )
540 {
541 Int32 i, j, h, bigN, hp;
542 UInt32 v;
543
544 bigN = hi - lo + 1;
545 if (bigN < 2) return;
546
547 hp = 0;
548 while (incs[hp] < bigN) hp++;
549 hp--;
550
551 for (; hp >= 0; hp--) {
552 h = incs[hp];
553
554 i = lo + h;
555 while (True) {
556
557 /*-- copy 1 --*/
558 if (i > hi) break;
559 v = ptr[i];
560 j = i;
561 while ( mainGtU (
562 ptr[j-h]+d, v+d, block, quadrant, nblock, budget
563 ) ) {
564 ptr[j] = ptr[j-h];
565 j = j - h;
566 if (j <= (lo + h - 1)) break;
567 }
568 ptr[j] = v;
569 i++;
570
571 /*-- copy 2 --*/
572 if (i > hi) break;
573 v = ptr[i];
574 j = i;
575 while ( mainGtU (
576 ptr[j-h]+d, v+d, block, quadrant, nblock, budget
577 ) ) {
578 ptr[j] = ptr[j-h];
579 j = j - h;
580 if (j <= (lo + h - 1)) break;
581 }
582 ptr[j] = v;
583 i++;
584
585 /*-- copy 3 --*/
586 if (i > hi) break;
587 v = ptr[i];
588 j = i;
589 while ( mainGtU (
590 ptr[j-h]+d, v+d, block, quadrant, nblock, budget
591 ) ) {
592 ptr[j] = ptr[j-h];
593 j = j - h;
594 if (j <= (lo + h - 1)) break;
595 }
596 ptr[j] = v;
597 i++;
598
599 if (*budget < 0) return;
600 }
601 }
602 }
603
604
605 /*---------------------------------------------*/
606 /*--
607 The following is an implementation of
608 an elegant 3-way quicksort for strings,
609 described in a paper "Fast Algorithms for
610 Sorting and Searching Strings", by Robert
611 Sedgewick and Jon L. Bentley.
612 --*/
613
614 #define mswap(zz1, zz2) \
615 { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; }
616
617 #define mvswap(zzp1, zzp2, zzn) \
618 { \
619 Int32 yyp1 = (zzp1); \
620 Int32 yyp2 = (zzp2); \
621 Int32 yyn = (zzn); \
622 while (yyn > 0) { \
623 mswap(ptr[yyp1], ptr[yyp2]); \
624 yyp1++; yyp2++; yyn--; \
625 } \
626 }
627
628 static
629 __inline__
630 UChar mmed3 ( UChar a, UChar b, UChar c )
631 {
632 UChar t;
633 if (a > b) { t = a; a = b; b = t; };
634 if (b > c) {
635 b = c;
636 if (a > b) b = a;
637 }
638 return b;
639 }
640
641 #define mmin(a,b) ((a) < (b)) ? (a) : (b)
642
643 #define mpush(lz,hz,dz) { stackLo[sp] = lz; \
644 stackHi[sp] = hz; \
645 stackD [sp] = dz; \
646 sp++; }
647
648 #define mpop(lz,hz,dz) { sp--; \
649 lz = stackLo[sp]; \
650 hz = stackHi[sp]; \
651 dz = stackD [sp]; }
652
653
654 #define mnextsize(az) (nextHi[az]-nextLo[az])
655
656 #define mnextswap(az,bz) \
657 { Int32 tz; \
658 tz = nextLo[az]; nextLo[az] = nextLo[bz]; nextLo[bz] = tz; \
659 tz = nextHi[az]; nextHi[az] = nextHi[bz]; nextHi[bz] = tz; \
660 tz = nextD [az]; nextD [az] = nextD [bz]; nextD [bz] = tz; }
661
662
663 #define MAIN_QSORT_SMALL_THRESH 20
664 #define MAIN_QSORT_DEPTH_THRESH (BZ_N_RADIX + BZ_N_QSORT)
665 #define MAIN_QSORT_STACK_SIZE 100
666
667 static
668 void mainQSort3 ( UInt32* ptr,
669 UChar* block,
670 UInt16* quadrant,
671 Int32 nblock,
672 Int32 loSt,
673 Int32 hiSt,
674 Int32 dSt,
675 Int32* budget )
676 {
677 Int32 unLo, unHi, ltLo, gtHi, n, m, med;
678 Int32 sp, lo, hi, d;
679
680 Int32 stackLo[MAIN_QSORT_STACK_SIZE];
681 Int32 stackHi[MAIN_QSORT_STACK_SIZE];
682 Int32 stackD [MAIN_QSORT_STACK_SIZE];
683
684 Int32 nextLo[3];
685 Int32 nextHi[3];
686 Int32 nextD [3];
687
688 sp = 0;
689 mpush ( loSt, hiSt, dSt );
690
691 while (sp > 0) {
692
693 AssertH ( sp < MAIN_QSORT_STACK_SIZE, 1001 );
694
695 mpop ( lo, hi, d );
696 if (hi - lo < MAIN_QSORT_SMALL_THRESH ||
697 d > MAIN_QSORT_DEPTH_THRESH) {
698 mainSimpleSort ( ptr, block, quadrant, nblock, lo, hi, d, budget );
699 if (*budget < 0) return;
700 continue;
701 }
702
703 med = (Int32)
704 mmed3 ( block[ptr[ lo ]+d],
705 block[ptr[ hi ]+d],
706 block[ptr[ (lo+hi)>>1 ]+d] );
707
708 unLo = ltLo = lo;
709 unHi = gtHi = hi;
710
711 while (True) {
712 while (True) {
713 if (unLo > unHi) break;
714 n = ((Int32)block[ptr[unLo]+d]) - med;
715 if (n == 0) {
716 mswap(ptr[unLo], ptr[ltLo]);
717 ltLo++; unLo++; continue;
718 };
719 if (n > 0) break;
720 unLo++;
721 }
722 while (True) {
723 if (unLo > unHi) break;
724 n = ((Int32)block[ptr[unHi]+d]) - med;
725 if (n == 0) {
726 mswap(ptr[unHi], ptr[gtHi]);
727 gtHi--; unHi--; continue;
728 };
729 if (n < 0) break;
730 unHi--;
731 }
732 if (unLo > unHi) break;
733 mswap(ptr[unLo], ptr[unHi]); unLo++; unHi--;
734 }
735
736 AssertD ( unHi == unLo-1, "mainQSort3(2)" );
737
738 if (gtHi < ltLo) {
739 mpush(lo, hi, d+1 );
740 continue;
741 }
742
743 n = mmin(ltLo-lo, unLo-ltLo); mvswap(lo, unLo-n, n);
744 m = mmin(hi-gtHi, gtHi-unHi); mvswap(unLo, hi-m+1, m);
745
746 n = lo + unLo - ltLo - 1;
747 m = hi - (gtHi - unHi) + 1;
748
749 nextLo[0] = lo; nextHi[0] = n; nextD[0] = d;
750 nextLo[1] = m; nextHi[1] = hi; nextD[1] = d;
751 nextLo[2] = n+1; nextHi[2] = m-1; nextD[2] = d+1;
752
753 if (mnextsize(0) < mnextsize(1)) mnextswap(0,1);
754 if (mnextsize(1) < mnextsize(2)) mnextswap(1,2);
755 if (mnextsize(0) < mnextsize(1)) mnextswap(0,1);
756
757 AssertD (mnextsize(0) >= mnextsize(1), "mainQSort3(8)" );
758 AssertD (mnextsize(1) >= mnextsize(2), "mainQSort3(9)" );
759
760 mpush (nextLo[0], nextHi[0], nextD[0]);
761 mpush (nextLo[1], nextHi[1], nextD[1]);
762 mpush (nextLo[2], nextHi[2], nextD[2]);
763 }
764 }
765
766 #undef mswap
767 #undef mvswap
768 #undef mpush
769 #undef mpop
770 #undef mmin
771 #undef mnextsize
772 #undef mnextswap
773 #undef MAIN_QSORT_SMALL_THRESH
774 #undef MAIN_QSORT_DEPTH_THRESH
775 #undef MAIN_QSORT_STACK_SIZE
776
777
778 /*---------------------------------------------*/
779 /* Pre:
780 nblock > N_OVERSHOOT
781 block32 exists for [0 .. nblock-1 +N_OVERSHOOT]
782 ((UChar*)block32) [0 .. nblock-1] holds block
783 ptr exists for [0 .. nblock-1]
784
785 Post:
786 ((UChar*)block32) [0 .. nblock-1] holds block
787 All other areas of block32 destroyed
788 ftab [0 .. 65536 ] destroyed
789 ptr [0 .. nblock-1] holds sorted order
790 if (*budget < 0), sorting was abandoned
791 */
792
793 #define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8])
794 #define SETMASK (1 << 21)
795 #define CLEARMASK (~(SETMASK))
796
797 static
798 void mainSort ( UInt32* ptr,
799 UChar* block,
800 UInt16* quadrant,
801 UInt32* ftab,
802 Int32 nblock,
803 Int32 verb,
804 Int32* budget )
805 {
806 Int32 i, j, k, ss, sb;
807 Int32 runningOrder[256];
808 Bool bigDone[256];
809 Int32 copyStart[256];
810 Int32 copyEnd [256];
811 UChar c1;
812 Int32 numQSorted;
813 UInt16 s;
814 if (verb >= 4) VPrintf0 ( " main sort initialise ...\n" );
815
816 /*-- set up the 2-byte frequency table --*/
817 for (i = 65536; i >= 0; i--) ftab[i] = 0;
818
819 j = block[0] << 8;
820 i = nblock-1;
821 for (; i >= 3; i -= 4) {
822 quadrant[i] = 0;
823 j = (j >> 8) | ( ((UInt16)block[i]) << 8);
824 ftab[j]++;
825 quadrant[i-1] = 0;
826 j = (j >> 8) | ( ((UInt16)block[i-1]) << 8);
827 ftab[j]++;
828 quadrant[i-2] = 0;
829 j = (j >> 8) | ( ((UInt16)block[i-2]) << 8);
830 ftab[j]++;
831 quadrant[i-3] = 0;
832 j = (j >> 8) | ( ((UInt16)block[i-3]) << 8);
833 ftab[j]++;
834 }
835 for (; i >= 0; i--) {
836 quadrant[i] = 0;
837 j = (j >> 8) | ( ((UInt16)block[i]) << 8);
838 ftab[j]++;
839 }
840
841 /*-- (emphasises close relationship of block & quadrant) --*/
842 for (i = 0; i < BZ_N_OVERSHOOT; i++) {
843 block [nblock+i] = block[i];
844 quadrant[nblock+i] = 0;
845 }
846
847 if (verb >= 4) VPrintf0 ( " bucket sorting ...\n" );
848
849 /*-- Complete the initial radix sort --*/
850 for (i = 1; i <= 65536; i++) ftab[i] += ftab[i-1];
851
852 s = block[0] << 8;
853 i = nblock-1;
854 for (; i >= 3; i -= 4) {
855 s = (s >> 8) | (block[i] << 8);
856 j = ftab[s] -1;
857 ftab[s] = j;
858 ptr[j] = i;
859 s = (s >> 8) | (block[i-1] << 8);
860 j = ftab[s] -1;
861 ftab[s] = j;
862 ptr[j] = i-1;
863 s = (s >> 8) | (block[i-2] << 8);
864 j = ftab[s] -1;
865 ftab[s] = j;
866 ptr[j] = i-2;
867 s = (s >> 8) | (block[i-3] << 8);
868 j = ftab[s] -1;
869 ftab[s] = j;
870 ptr[j] = i-3;
871 }
872 for (; i >= 0; i--) {
873 s = (s >> 8) | (block[i] << 8);
874 j = ftab[s] -1;
875 ftab[s] = j;
876 ptr[j] = i;
877 }
878
879 /*--
880 Now ftab contains the first loc of every small bucket.
881 Calculate the running order, from smallest to largest
882 big bucket.
883 --*/
884 for (i = 0; i <= 255; i++) {
885 bigDone [i] = False;
886 runningOrder[i] = i;
887 }
888
889 {
890 Int32 vv;
891 Int32 h = 1;
892 do h = 3 * h + 1; while (h <= 256);
893 do {
894 h = h / 3;
895 for (i = h; i <= 255; i++) {
896 vv = runningOrder[i];
897 j = i;
898 while ( BIGFREQ(runningOrder[j-h]) > BIGFREQ(vv) ) {
899 runningOrder[j] = runningOrder[j-h];
900 j = j - h;
901 if (j <= (h - 1)) goto zero;
902 }
903 zero:
904 runningOrder[j] = vv;
905 }
906 } while (h != 1);
907 }
908
909 /*--
910 The main sorting loop.
911 --*/
912
913 numQSorted = 0;
914
915 for (i = 0; i <= 255; i++) {
916
917 /*--
918 Process big buckets, starting with the least full.
919 Basically this is a 3-step process in which we call
920 mainQSort3 to sort the small buckets [ss, j], but
921 also make a big effort to avoid the calls if we can.
922 --*/
923 ss = runningOrder[i];
924
925 /*--
926 Step 1:
927 Complete the big bucket [ss] by quicksorting
928 any unsorted small buckets [ss, j], for j != ss.
929 Hopefully previous pointer-scanning phases have already
930 completed many of the small buckets [ss, j], so
931 we don't have to sort them at all.
932 --*/
933 for (j = 0; j <= 255; j++) {
934 if (j != ss) {
935 sb = (ss << 8) + j;
936 if ( ! (ftab[sb] & SETMASK) ) {
937 Int32 lo = ftab[sb] & CLEARMASK;
938 Int32 hi = (ftab[sb+1] & CLEARMASK) - 1;
939 if (hi > lo) {
940 if (verb >= 4)
941 VPrintf4 ( " qsort [0x%x, 0x%x] "
942 "done %d this %d\n",
943 ss, j, numQSorted, hi - lo + 1 );
944 mainQSort3 (
945 ptr, block, quadrant, nblock,
946 lo, hi, BZ_N_RADIX, budget
947 );
948 numQSorted += (hi - lo + 1);
949 if (*budget < 0) return;
950 }
951 }
952 ftab[sb] |= SETMASK;
953 }
954 }
955
956 AssertH ( !bigDone[ss], 1006 );
957
958 /*--
959 Step 2:
960 Now scan this big bucket [ss] so as to synthesise the
961 sorted order for small buckets [t, ss] for all t,
962 including, magically, the bucket [ss,ss] too.
963 This will avoid doing Real Work in subsequent Step 1's.
964 --*/
965 {
966 for (j = 0; j <= 255; j++) {
967 copyStart[j] = ftab[(j << 8) + ss] & CLEARMASK;
968 copyEnd [j] = (ftab[(j << 8) + ss + 1] & CLEARMASK) - 1;
969 }
970 for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) {
971 k = ptr[j]-1; if (k < 0) k += nblock;
972 c1 = block[k];
973 if (!bigDone[c1])
974 ptr[ copyStart[c1]++ ] = k;
975 }
976 for (j = (ftab[(ss+1) << 8] & CLEARMASK) - 1; j > copyEnd[ss]; j--) {
977 k = ptr[j]-1; if (k < 0) k += nblock;
978 c1 = block[k];
979 if (!bigDone[c1])
980 ptr[ copyEnd[c1]-- ] = k;
981 }
982 }
983
984 AssertH ( copyStart[ss]-1 == copyEnd[ss], 1007 );
985
986 for (j = 0; j <= 255; j++) ftab[(j << 8) + ss] |= SETMASK;
987
988 /*--
989 Step 3:
990 The [ss] big bucket is now done. Record this fact,
991 and update the quadrant descriptors. Remember to
992 update quadrants in the overshoot area too, if
993 necessary. The "if (i < 255)" test merely skips
994 this updating for the last bucket processed, since
995 updating for the last bucket is pointless.
996
997 The quadrant array provides a way to incrementally
998 cache sort orderings, as they appear, so as to
999 make subsequent comparisons in fullGtU() complete
1000 faster. For repetitive blocks this makes a big
1001 difference (but not big enough to be able to avoid
1002 the fallback sorting mechanism, exponential radix sort).
1003
1004 The precise meaning is: at all times:
1005
1006 for 0 <= i < nblock and 0 <= j <= nblock
1007
1008 if block[i] != block[j],
1009
1010 then the relative values of quadrant[i] and
1011 quadrant[j] are meaningless.
1012
1013 else {
1014 if quadrant[i] < quadrant[j]
1015 then the string starting at i lexicographically
1016 precedes the string starting at j
1017
1018 else if quadrant[i] > quadrant[j]
1019 then the string starting at j lexicographically
1020 precedes the string starting at i
1021
1022 else
1023 the relative ordering of the strings starting
1024 at i and j has not yet been determined.
1025 }
1026 --*/
1027 bigDone[ss] = True;
1028
1029 if (i < 255) {
1030 Int32 bbStart = ftab[ss << 8] & CLEARMASK;
1031 Int32 bbSize = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart;
1032 Int32 shifts = 0;
1033
1034 while ((bbSize >> shifts) > 65534) shifts++;
1035
1036 for (j = bbSize-1; j >= 0; j--) {
1037 Int32 a2update = ptr[bbStart + j];
1038 UInt16 qVal = (UInt16)(j >> shifts);
1039 quadrant[a2update] = qVal;
1040 if (a2update < BZ_N_OVERSHOOT)
1041 quadrant[a2update + nblock] = qVal;
1042 }
1043 AssertH ( ((bbSize-1) >> shifts) <= 65535, 1002 );
1044 }
1045
1046 }
1047
1048 if (verb >= 4)
1049 VPrintf3 ( " %d pointers, %d sorted, %d scanned\n",
1050 nblock, numQSorted, nblock - numQSorted );
1051 }
1052
1053 #undef BIGFREQ
1054 #undef SETMASK
1055 #undef CLEARMASK
1056
1057
1058 /*---------------------------------------------*/
1059 /* Pre:
1060 nblock > 0
1061 arr2 exists for [0 .. nblock-1 +N_OVERSHOOT]
1062 ((UChar*)arr2) [0 .. nblock-1] holds block
1063 arr1 exists for [0 .. nblock-1]
1064
1065 Post:
1066 ((UChar*)arr2) [0 .. nblock-1] holds block
1067 All other areas of block destroyed
1068 ftab [ 0 .. 65536 ] destroyed
1069 arr1 [0 .. nblock-1] holds sorted order
1070 */
1071 void BZ2_blockSort ( EState* s )
1072 {
1073 UInt32* ptr = s->ptr;
1074 UChar* block = s->block;
1075 UInt32* ftab = s->ftab;
1076 Int32 nblock = s->nblock;
1077 Int32 verb = s->verbosity;
1078 Int32 wfact = s->workFactor;
1079 UInt16* quadrant;
1080 Int32 budget;
1081 Int32 budgetInit;
1082 Int32 i;
1083
1084 if (nblock < 10000) {
1085 fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb );
1086 } else {
1087 /* Calculate the location for quadrant, remembering to get
1088 the alignment right. Assumes that &(block[0]) is at least
1089 2-byte aligned -- this should be ok since block is really
1090 the first section of arr2.
1091 */
1092 i = nblock+BZ_N_OVERSHOOT;
1093 if (i & 1) i++;
1094 quadrant = (UInt16*)(&(block[i]));
1095
1096 /* (wfact-1) / 3 puts the default-factor-30
1097 transition point at very roughly the same place as
1098 with v0.1 and v0.9.0.
1099 Not that it particularly matters any more, since the
1100 resulting compressed stream is now the same regardless
1101 of whether or not we use the main sort or fallback sort.
1102 */
1103 if (wfact < 1 ) wfact = 1;
1104 if (wfact > 100) wfact = 100;
1105 budgetInit = nblock * ((wfact-1) / 3);
1106 budget = budgetInit;
1107
1108 mainSort ( ptr, block, quadrant, ftab, nblock, verb, &budget );
1109 if (verb >= 3)
1110 VPrintf3 ( " %d work, %d block, ratio %5.2f\n",
1111 budgetInit - budget,
1112 nblock,
1113 (float)(budgetInit - budget) /
1114 (float)(nblock==0 ? 1 : nblock) );
1115 if (budget < 0) {
1116 if (verb >= 2)
1117 VPrintf0 ( " too repetitive; using fallback"
1118 " sorting algorithm\n" );
1119 fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb );
1120 }
1121 }
1122
1123 s->origPtr = -1;
1124 for (i = 0; i < s->nblock; i++)
1125 if (ptr[i] == 0)
1126 { s->origPtr = i; break; };
1127
1128 AssertH( s->origPtr != -1, 1003 );
1129 }
1130
1131
1132 /*-------------------------------------------------------------*/
1133 /*--- end blocksort.c ---*/
1134 /*-------------------------------------------------------------*/
This page took 0.098812 seconds and 4 git commands to generate.